Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(6): 1981-1987, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291719

RESUMO

Electronic flicker noise is recognized as the most abundant noise in electronic conductors, either as an unwanted contribution or as a source of information on electron transport mechanisms and material properties. This noise is typically observed when a voltage difference is applied across a conductor or current is flowing through it. Here, we identify an unknown type of electronic flicker noise that is found when a temperature difference is applied across a nanoscale conductor in the absence of a net charge current or voltage bias. The revealed delta-T flicker noise is demonstrated in molecular junctions and characterized using quantum transport theory. This noise is expected to arise in nanoscale electronic conductors subjected to unintentional temperature gradients, where it can be a performance-limiting factor. On the positive side, delta-T flicker noise can detect temperature differences across a large variety of nanoscale conductors, down to atomic-scale junctions with no special setup requirements.

2.
Nano Lett ; 23(17): 7775-7781, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37603598

RESUMO

Forming atomic-scale contacts with attractive geometries and material compositions is a long-term goal of nanotechnology. Here, we show that a rich family of bimetallic atomic-contacts can be fabricated in break-junction setups. The structure and material composition of these contacts can be controlled by atomically precise electromigration, where the metal types of the electron-injecting and sink electrodes determine the type of atoms added to, or subtracted from, the contact structure. The formed bimetallic structures include, for example, platinum and aluminum electrodes bridged by an atomic chain composed of platinum and aluminum atoms as well as iron-nickel single-atom contacts that act as a spin-valve break junction without the need for sophisticated spin-valve geometries. The versatile nature of atomic contacts in bimetallic junctions and the ability to control their structure by electromigration can be used to expand the structural variety of atomic and molecular junctions and their span of properties.

3.
Nano Lett ; 23(9): 3775-3780, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37129047

RESUMO

In contrast to silicon-based transistors, single-molecule junctions can be gated by simple mechanical means. Specifically, charge can be transferred between the junction's electrodes and its molecular bridge when the interelectrode distance is modified, leading to variations in the electronic transport properties of the junction. While this effect has been studied extensively, the influence of the molecular orientation on mechanical gating has not been addressed, despite its potential influence on the gating effectiveness. Here, we show that the same molecular junction can experience either clear mechanical gating or none, depending on the molecular orientation in the junctions. The effect is found in silver-ferrocene-silver break junctions and analyzed in view of ab initio and transport calculations, where the influence of the molecular orbital geometry on charge transfer to or from the molecule is revealed. The molecular orientation is thus a new degree of freedom that can be used to optimize mechanically gated molecular junctions.

4.
Materials (Basel) ; 16(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36984080

RESUMO

Silver coins were the first coins to be manufactured by mass production in the southern Levant. An assemblage of tiny provincial silver coins of the local (Judahite standard) and (Attic) obol-based denominations from the Persian and Hellenistic period Yehud and dated to the second half of the fourth century BCE were analyzed to determine their material composition. Of the 50 silver coins, 32 are defined as Type 5 (Athena/Owl) of the Persian period Yehud series (ca. 350-333 BCE); 9 are Type 16 (Persian king wearing a jagged crown/Falcon in flight) (ca. 350-333); 3 are Type 24 series (Portrait/Falcon) of the Macedonian period (ca. 333-306 BCE); and 6 are Type 31 (Portrait/Falcon) (ca. 306-302/1 BCE). The coins underwent visual testing, multi-focal light microscope observation, XRF analysis, and SEM-EDS analysis. The metallurgical findings revealed that all the coins from the Type 5, 16, 24, and 31 series are made of high-purity silver with a small percentage of copper. Based on these results, it is suggested that each series was manufactured using a controlled composition of silver-copper alloy. The findings present novel information about the material culture of the southern Levant during the Late Persian period and Macedonian period, as expressed through the production and use of these silver coins.

5.
Nat Commun ; 13(1): 4113, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840588

RESUMO

When reducing the size of materials towards the nanoscale, magnetic properties can emerge due to structural variations. Here, we show the reverse effect, where the structure of nanomaterials is controlled by magnetic manipulations. Using the break-junction technique, we find that the interatomic distance in platinum atomic wires is shorter or longer by up to ∼20%, when a magnetic field is applied parallel or perpendicular to the wires during their formation, respectively. The magnetic field direction also affects the wire length, where longer (shorter) wires are formed under a parallel (perpendicular) field. Our experimental analysis, supported by calculations, indicates that the direction of the applied magnetic field promotes the formation of suspended atomic wires with a specific magnetization orientation associated with typical orbital characteristics, interatomic distance, and stability. A similar effect is found for various metal and metal-oxide atomic wires, demonstrating that magnetic fields can control the atomistic structure of different nanomaterials when applied during their formation stage.

6.
Phys Rev Lett ; 128(23): 237701, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749205

RESUMO

We report on a quantum form of electronic flicker noise in nanoscale conductors that contains valuable information on quantum transport. This noise is experimentally identified in atomic and molecular junctions and theoretically analyzed by considering quantum interference due to fluctuating scatterers. Using conductance, shot-noise, and flicker-noise measurements, we show that the revealed quantum flicker noise uniquely depends on the distribution of transmission channels, a key characteristic of quantum conductors. This dependence opens the door for the application of flicker noise as a diagnostic probe for fundamental properties of quantum conductors and many-body quantum effects, a role that up to now has been performed by the experimentally less-accessible shot noise.

7.
Adv Mater ; 34(13): e2106629, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35064943

RESUMO

A critical overview of the theory of the chirality-induced spin selectivity (CISS) effect, that is, phenomena in which the chirality of molecular species imparts significant spin selectivity to various electron processes, is provided. Based on discussions in a recently held workshop, and further work published since, the status of CISS effects-in electron transmission, electron transport, and chemical reactions-is reviewed. For each, a detailed discussion of the state-of-the-art in theoretical understanding is provided and remaining challenges and research opportunities are identified.

8.
Nanoscale ; 13(44): 18434-18440, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34700338

RESUMO

In the field of molecular electronics, the interplay between molecular orientation and the resulting electronic transport is of central interest. At the single molecule level, this topic is extensively studied with the aid of break junction setups. In such experiments, two metal electrodes are brought into contact, and the conductance is typically measured when the electrodes are pulled apart in the presence of molecules, until a molecule bridges the two electrodes. However, the molecular junctions formed in this pull process reflect only part of the rich possible junction configurations. Here, we show that the push process, in which molecular junctions are formed by bringing the electrodes towards each other, allows the fabrication of molecular junction structures that are not necessarily formed in the pull process. We also find that in the extreme case, molecular junctions can be formed only in the push process that is typically ignored. Our findings demonstrate that tracking the two inverse processes of molecular junction formation, reveals a more comprehensive picture of the variety of molecular configurations in molecular junctions.

9.
Nat Commun ; 10(1): 5565, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804498

RESUMO

Key spin transport phenomena, including magnetoresistance and spin transfer torque, cannot be activated without spin-polarized currents, in which one electron spin is dominant. At the nanoscale, the relevant length-scale for modern spintronics, spin current generation is rather limited due to unwanted contributions from poorly spin-polarized frontier states in ferromagnetic electrodes, or too short length-scales for efficient spin splitting by spin-orbit interaction and magnetic fields. Here, we show that spin-polarized currents can be generated in silver-vanadocene-silver single molecule junctions without magnetic components or magnetic fields. In some cases, the measured spin currents approach the limit of ideal ballistic spin transport. Comparison between conductance and shot-noise measurements to detailed calculations reveals a mechanism based on spin-dependent quantum interference that yields very efficient spin filtering. Our findings pave the way for nanoscale spintronics based on quantum interference, with the advantages of low sensitivity to decoherence effects and the freedom to use non-magnetic materials.

10.
Nature ; 562(7726): 240-244, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305745

RESUMO

Since the discovery a century ago1-3 of electronic thermal noise and shot noise, these forms of fundamental noise have had an enormous impact on science and technology research and applications. They can be used to probe quantum effects and thermodynamic quantities4-11, but they are also regarded as undesirable in electronic devices because they obscure the target signal. Electronic thermal noise is generated at equilibrium at finite (non-zero) temperature, whereas electronic shot noise is a non-equilibrium current noise that is generated by partial transmission and reflection (partition) of the incoming electrons8. Until now, shot noise has been stimulated by a voltage, either applied directly8 or activated by radiation12,13. Here we report measurements of a fundamental electronic noise that is generated by temperature differences across nanoscale conductors, which we term 'delta-T noise'. We experimentally demonstrate this noise in atomic and molecular junctions, and analyse it theoretically using the Landauer formalism8,14. Our findings show that delta-T noise is distinct from thermal noise and voltage-activated shot noise8. Like thermal noise, it has a purely thermal origin, but delta-T noise is generated only out of equilibrium. Delta-T noise and standard shot noise have the same partition origin, but are activated by different stimuli. We infer that delta-T noise in combination with thermal noise can be used to detect temperature differences across nanoscale conductors without the need to fabricate sophisticated local probes. Thus it can greatly facilitate the study of heat transport at the nanoscale. In the context of modern electronics, temperature differences are often generated unintentionally across electronic components. Taking into account the contribution of delta-T noise in these cases is likely to be essential for the design of efficient nanoscale electronics at the quantum limit.

11.
Beilstein J Nanotechnol ; 9: 1471-1477, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977680

RESUMO

Single-molecule junctions are versatile test beds for electronic transport at the atomic scale. However, not much is known about the early formation steps of such junctions. Here, we study the electronic transport properties of premature junction configurations before the realization of a single-molecule bridge based on vanadocene molecules and silver electrodes. With the aid of conductance measurements, inelastic electron spectroscopy and shot noise analysis, we identify the formation of a single-molecule junction in parallel to a single-atom junction and examine the interplay between these two conductance pathways. Furthermore, the role of this structure in the formation of single-molecule junctions is studied. Our findings reveal the conductance and structural properties of premature molecular junction configurations and uncover the different scenarios in which a single-molecule junction is formed. Future control over such processes may pave the way for directed formation of preferred junction structures.

12.
Nano Lett ; 16(3): 1741-5, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26926769

RESUMO

Molecular junctions based on ferromagnetic electrodes allow the study of electronic spin transport near the limit of spintronics miniaturization. However, these junctions reveal moderate magnetoresistance that is sensitive to the orbital structure at their ferromagnet-molecule interfaces. The key structural parameters that should be controlled in order to gain high magnetoresistance have not been established, despite their importance for efficient manipulation of spin transport at the nanoscale. Here, we show that single-molecule junctions based on nickel electrodes and benzene molecules can yield a significant anisotropic magnetoresistance of up to ∼200% near the conductance quantum G0. The measured magnetoresistance is mechanically tuned by changing the distance between the electrodes, revealing a nonmonotonic response to junction elongation. These findings are ascribed with the aid of first-principles calculations to variations in the metal-molecule orientation that can be adjusted to obtain highly spin-selective orbital hybridization. Our results demonstrate the important role of geometrical considerations in determining the spin transport properties of metal-molecule interfaces.

13.
Nano Lett ; 15(6): 3894-8, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25946374

RESUMO

Generating highly spin-polarized currents at the nanoscale is essential for spin current manipulations and spintronic applications. We find indications for up to 100% spin-polarized currents across nickel oxide atomic junctions formed between two nickel electrodes. The degree of spin polarization is probed by analyzing the shot noise resulting from the discrete statistics of spin-polarized electron transport. We show that spin filtering can be significantly enhanced by local chemical modifications at the single-atom level. This approach paves the way for effective manipulations of spin transport at the fundamental limit of miniaturization.

14.
Beilstein J Nanotechnol ; 6: 2417-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734532

RESUMO

The vibration-mediated Kondo effect attracted considerable theoretical interest during the last decade. However, due to lack of extensive experimental demonstrations, the fine details of the phenomenon were not addressed. Here, we analyze the evolution of vibration-mediated Kondo effect in molecular junctions during mechanical stretching. The described analysis reveals the different contributions of Kondo and inelastic transport.

15.
Nano Lett ; 14(6): 2988-93, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24810575

RESUMO

We investigate periodical oscillations in the conductance of suspended Au and Pt atomic chains during elongation under mechanical stress. Analysis of conductance and shot noise measurements reveals that the oscillations are mainly related to variations in a specific conduction channel as the chain undergoes transitions between zigzag and linear atomic configurations. The calculated local electronic structure shows that the oscillations originate from varying degrees of hybridization between the atomic orbitals along the chain as a function of the zigzag angle. These variations are highly dependent on the directionally and symmetry of the relevant orbitals, in agreement with the order-of-magnitude difference between the Pt and Au oscillation amplitudes observed in experiment. Our results demonstrate that the sensitivity of conductance to structural variations can be controlled by designing atomic-scale conductors in view of the directional interactions between atomic orbitals.

16.
ACS Nano ; 7(12): 11147-55, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24252112

RESUMO

The effect of electron-vibration interaction in atomic-scale junctions with a single conduction channel was widely investigated both theoretically and experimentally. However, the more general case of junctions with several conduction channels has received very little attention. Here we study electron-vibration interaction in multichannel molecular junctions, formed by introduction of either benzene or carbon dioxide between platinum electrodes. By combining shot noise and differential conductance measurements, we analyze the effect of vibration activation on conductance in view of the distribution of conduction channels. Based on the shift of vibration energy while the junction is stretched, we identify vibration modes with transverse and longitudinal symmetry. The detection of different vibration modes is ascribed to efficient vibration coupling to different conduction channels according to symmetry considerations. While most of our observations can be explained in view of the theoretical models for a single conduction channel, the appearance of conductance enhancement, induced by electron-vibration interaction, at high conductance values indicates either unexpected high electron-vibration coupling or interchannel scattering.

17.
Nano Lett ; 13(5): 1956-61, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23517527

RESUMO

Using a break junction technique, we find a clear signature for the formation of conducting hybrid junctions composed of a single organic molecule (benzene, naphthalene, or anthracene) connected to chains of platinum atoms. The hybrid junctions exhibit metallic-like conductance (~0.1-1G0), which is rather insensitive to further elongation by additional atoms. At low bias voltage the hybrid junctions can be elongated significantly beyond the length of the bare atomic chains. Ab initio calculations reveal that benzene based hybrid junctions have a significant binding energy and high structural flexibility that may contribute to the survival of the hybrid junction during the elongation process. The fabrication of hybrid junctions opens the way for combining the different properties of atomic chains and organic molecules to realize a new class of atomic scale interfaces.


Assuntos
Antracenos/química , Benzeno/química , Naftalenos/química , Platina/química , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...